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Abstract

We study the q-deformed fuzzy sphere, which is related to D-branes on SU(2) WZW models,
for both real q and q a root of unity. We construct for both cases a differential calculus which is
compatible with the star structure, study the integral, and find a canonical frame of one-forms. We
then consider actions for scalar field theory, as well as for Yang–Mills and Chern–Simons-type gauge
theories. The zero curvature condition is solved. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

There has been considerable work aimed at formulating models of quantum field theory on
non-commutative spaces. The motivation is to obtain new insights into the UV-divergences
and the problem of renormalization. On some simple non-commutative spaces, it is now pos-
sible to formulate quantum field theories. In some case, the UV divergences are completely
regularized [16,25,43], while in others they persist [13,27,41,42]. Moreover, it was realized
that such non-commutative spaces are in fact induced by certain sectors of string theory,
particularly open strings ending on D-branes with a background B field [7,38,39]. This is
both a valuable source of physical insights, as well as a vindication of a more “puristic”
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approach of studying such spaces per se. In particular, spaces with quantum group symme-
tries have also been studied from a more formal approach. While quantum groups appear
naturally in the context of two-dimensional conformal field theories [3], a formulation of a
quantum field theory based on such spaces has proved to be difficult.

Recently, Alekseev et al. [1] have found that spherical D-branes in the SU(2) WZW
model are seen by open strings ending on them (in an appropriate background) as certain
quasi-associative algebras, which are closely related to q-deformations of fuzzy spheres.
Here q is related to the level k of the WZW model by the formula

q = exp

(
iπ

k + 2

)
. (1.1)

We shall take this as sufficient motivation to study in detail the q-deformed fuzzy spheres,
and to formulate field theories on them.

The algebra found in [1] is (weakly) non-associative, and covariant under SU(2). Using
a so-called Drinfeld twist, it can be transformed into an associative algebra which we call
S2
q,N . It is covariant under the “quantum group”Uq(su(2)), which is the quantized universal

enveloping algebra of Drinfeld and Jimbo [9,19]. HereN is an integer related to a particular
boundary condition on the D-brane in SU(2) WZW model.

After reviewing the undeformed fuzzy sphere, we defineS2
q,N in Section 2 for both q ∈ R

and |q| = 1. As an algebra, it is simply a finite-dimensional matrix algebra, equipped with
additional structure such as an action of Uq(su(2)), a covariant differential calculus, a star
structure, and an integral. For q ∈ R, this is precisely the “discrete” series of Podleś spheres
[29]. The case |q| = 1, which is most relevant to string theory, has apparently not been
studied in detail in the literature. In Section 3, we develop the non-commutative differential
geometry on S2

q,N , using an approach which is suitable for both q ∈ R and |q| = 1. The dif-
ferential calculus turns out to be rather elaborate, but quite satisfactory. We are able to show,
in particular, that in both cases there exists a three-dimensional exterior differential calculus
with real structure and a Hodge star, and we develop a frame formalism [11,12,26]. This
allows us to write Lagrangians for field theories on S2

q,N . In particular, the fact that the tan-
gential space is three-dimensional unlike in the classical case turns out to be very interesting
physically, and is related to recent results [2] on Chern–Simons actions on the D-branes.

Using these tools, we study in Section 4 actions for scalar fields and abelian gauge fields
on S2

q,N . The latter case is particularly interesting, since it turns out that certain actions for
gauge theories arise in a very natural way in terms of polynomials of one-forms. In particular,
the kinetic terms arise automatically due to the non-commutativity of the space. Moreover,
because the calculus is three-dimensional, the gauge field consists of a usual (abelian) gauge
field plus a (pseudo) scalar in the classical limit. This is similar to a Kaluza–Klein reduction.
One naturally obtains analogs of Yang–Mills and Chern–Simons actions, again because the
calculus is three-dimensional. In a certain limit where q = 1, such actions were shown to
arise from open strings ending onD-branes in the SU(2)WZW model [2]. The gauge theory
actions for q �= 1 suggest a new version of gauge invariance, where the gauge “group” is a
quotient Uq(su(2))/I , which can be identified with the space of functions on the deformed
fuzzy sphere. This is discussed in Section 4.2.
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Finally in Section 5, we give the precise relation of S2
q,N to the quasi-associative algebra

of functions on D-branes found in [1], using a Drinfeld twist.
In this paper, we shall only consider the first-quantized situation; the second quanti-

zation is postponed to a forthcoming paper [18]. The latter turns out to be necessary for
implementing the symmetry Uq(su(2)) on the space of fields in a fully satisfactory way.

2. The qqq-deformed fuzzy sphere

2.1. Review of the undeformed case

We briefly recall the definition of the “standard” fuzzy sphere [16,25,43]. Much informa-
tion about the standard unit sphere S2 in R3 is encoded in the infinite dimensional algebra
of polynomials generated by x̃ = (x̃1, x̃2, x̃3) ∈ R3 with the defining relations

[x̃i , x̃j ] = 0,
3∑

i=1

x̃2
i = r2. (2.1)

The algebra of functions on the fuzzy sphere is defined as the finite algebra S2
N generated

by x̂ = (x̂1, x̂2, x̂3) with relations

[x̂i , x̂j ] = iλNεijkx̂k,

3∑
i=1

x̂2
i = r2. (2.2)

The real parameter λN > 0 characterizes the non-commutativity.
These relations are realized in a suitable finite-dimensional irreducible unitary repre-

sentations of the SU(2) group. This is most conveniently done using the Wigner–Jordan
realization of the generators x̂i , i = 1, 2, 3, in terms of two pairs of annihilation and creation
operators Aα,A

+α
, α = ± 1

2 , which satisfy

[Aα,Aβ ] = [A+α

, A+β

] = 0, [Aα,A
+β

] = δβα , (2.3)

and act on the Fock space F spanned by the vectors

|n1, n2〉 = 1√
n1!n2!

(A+1/2
)n1(A+−(1/2)

)n2 |0〉. (2.4)

Here |0〉 is the vacuum defined by Ai |0〉 = 0. The operators x̂i take the form

x̂i = λN√
2
A+α′

εα′ασ
αβ
i Aβ. (2.5)

Here εαα′ is the antisymmetric tensor (spinor metric), and σαβ
i are the Clebsch–Gordan co-

efficients, that is rescaled Pauli-matrices. The number operator is given by N̂ = ∑
αA

+α
Aα .

When restricted to the (N + 1)-dimensional subspace

FN =
{∑

A+α1 · · ·A+αN |0〉 (N creation operators)
}
. (2.6)
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It yields for any given N = 0, 1, 2, . . . , the irreducible unitary representation in which the
parameters λN and r are related as

r

λN
=
√
N

2

(
N

2
+ 1

)
. (2.7)

The algebra S2
N generated by the x̂i is clearly the simple matrix algebra Mat(N +1). Under

the adjoint action of SU(2), it decomposes into the direct sum (1)⊕(3)⊕(5)⊕· · ·⊕(2N+1)
of irreducible representations of SO(3) [16,43].

2.2. The q-deformed fuzzy sphere

The fuzzy sphere S2
N is invariant under the action of SO(3), or equivalently under the

action of U(so(3)). We shall define finite algebras S2
q,N generated by xi for i = 1, 0,−1,

which have completely analogous properties to those of SN , but which are covariant under
the quantized universal enveloping algebra Uq(su(2)). This will be done for both q ∈ R
and q a phase, including the appropriate reality structure. In the first case, the S2

q,N will turn
out to be the “discrete series” of Podleś’ quantum spheres [29]. Here we will study them
more closely from the above point of view. However, we also allow q to be a root of unity,
with certain restrictions. In a twisted form, this case does appear naturally on D-branes in
the SU(2) WZW model, as was shown in [1].

In order to make the analogy to the undeformed case obvious, we shall perform a
q-deformed Jordan–Wigner construction, which is covariant under Uq(su(2)). To fix the
notation, we recall the basic relations of Uq(su(2))

[H,X±] = 2X±, [X+, X−] = qH − q−H

q − q−1
= [H ]q, (2.8)

where the q-numbers are defined as [n]q = (qn−q−n)/(q−q−1). The action ofUq(su(2))
on a tensor product of representations is encoded in the coproduct 1

∆(H) = H ⊗ 1 + 1 ⊗ H, ∆(X±) = X± ⊗ q−H/2 + qH/2 ⊗ X±. (2.9)

The antipode and the counit are given by

S(H) = −H, S(X+) = −q−1X+, S(X−) = −qX−,
ε(H) = ε(X±) = 0. (2.10)

The star structure is related to the Cartan–Weyl involution θ(X±) = X∓, θ(H) = H , and
will be discussed below. All symbols will now be understood to carry a label “q”, which
we shall omit.

An algebra A is called an Uq(su(2))-module algebra if there exists an action

Uq(su(2)) ×A→ A, (u, a) �→ u � a, (2.11)

1 We use the opposite coproduct than in the standard conventions, but nevertheless the invariant tensors and
R̂-matrices will be the standard ones. The reason for this is explained in Appendix A.
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which satisfies u � (ab) = (u(1) � a)(u(2) � b) for a, b ∈ A. Here ∆(u) = u(1) ⊗ u(2) is the
Sweedler notation for the coproduct.

Consider q-deformed creation and anihilation operators Aα,A
+α

for α = ± 1
2 , which

satisfy the relations (cp. [36,45])

A+α

Aβ = δαβ + qR̂
αγ
βδ AγA

+δ

, (P−)αβγ δAαAβ = 0, (P−)αβγ δA
+δ

A+γ = 0,

(2.12)

where R̂αγ
βδ = q(P+)αγβδ − q−1(P−)αγβδ is the decomposition of the R̂-matrix of Uq(su(2))

into the projection operators on the symmetric and antisymmetric part. They can be written as

(P−)αβγ δ = 1

−[2]q
εαβεγ δ, (P+)αβγ δ = σ

αβ
i σ i

γ δ. (2.13)

Here εαβ is the q-deformed invariant antisymmetric tensor, and σ i
αβ are the q-deformed

Clebsch–Gordan coefficients; they are given explicitly in Appendix A. The factor −[2]−1
q

arises from the relation εαβεαβ = −[2]q . The above relations are covariant underUq(su(2)),
and define a left Uq(su(2))-module algebra. We shall denote the action on the generators
with lower indices by

u � Aα = Aβπ
β
α (u), (2.14)

so that πα
β (uv) = πα

γ (u)π
γ
β (v) for u, v ∈ Uq(su(2)). The generators with upper indices

transform in the contragredient representation, which means that

A+
α := εαβA

+β

(2.15)

transforms in the same way under Uq(su(2)) as Aα .
We consider again the corresponding Fock space F generated by the A+α

acting on the
vacuum |0〉, and its sectors

FN =
{∑

A+α1 · · ·A+αN |0〉 (N creation operators)
}
. (2.16)

It is well-known that these subspaces FN are N + 1-dimensional, as they are when q = 1,
and it follows that they form irreducible representations of Uq(su(2)) (at root of unity, this
will be true due to the restriction (2.36) we shall impose). This will be indicated by writing
FN = (N + 1), and the decomposition of F into irreducible representations is

F = F0 ⊕ F1 ⊕ F2 ⊕ · · · = (1) ⊕ (2) ⊕ (3) ⊕ · · · . (2.17)

Now we define

Ẑi = A+α′
εαα′σαβ

i Aβ, (2.18)

and

N̂ =
∑
α

A+α′
εαα′εαβAβ. (2.19)
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After some calculations, these operators can be shown to satisfy the relations

ε
ij
k ẐiẐj = q−1√

[2]q
(q−1[2]q − λN̂)Ẑk, (2.20)

Ẑ2 := gijẐiẐj = q−2 [2]q + N̂

[2]q
N̂ . (2.21)

Here λ = (q−q−1), gij is the q-deformed invariant tensor for spin 1 representations, and εij
k

is the corresponding q-deformed Clebsch–Gordan coefficient; they are given in Appendix
A. Moreover, one can verify that

N̂A+α = q−3A+α + q−2A+α

N̂, N̂Aα = −q−1Aα + q2AαN̂, (2.22)

which implies that

[N̂, Ẑi] = 0.

On the subspace FN , the “number” operator N̂ takes the value

N̂FN = q−N−2[N ]qFN. (2.23)

It is convenient to introduce also an undeformed number operator n̂ which has eigenvalues

n̂FN = NFN,

in particular, n̂Aα = Aα(n̂ − 1).
On the subspaces FN , the relation (2.20) becomes

ε
ij
k xixj = ΛNxk, (2.24)

x · x := gijxixj = r2. (2.25)

Here the variables have been rescaled to xi with

xi = r
qn̂+2√
[2]qCN

Ẑi .

The r is a real number, and we have defined

CN = [N ]q [N + 2]q
[2]2

q

, ΛN = r
[2]qN+1√

[N ]q [N + 2]q
. (2.26)

Using a completeness relation (see Appendix A) (2.24) can equivalently be written as

(P−)ijklxixj = 1

[2]q2
ΛNε

n
klxn. (2.27)

There is no i in the commutation relations, because we use a weight basis instead of Cartesian
coordinates. One can check that these relations precisely reproduce the “discrete” series of
Podleś’ quantum spheres (after another rescaling), see [29], Proposition 4.II. Hence we
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define S2
q,N to be the algebra generated by the variables xi acting on FN . Equipped with a

suitable star structure and a differential structure, this will be the q-deformed fuzzy sphere.
It is easy to see that the algebra S2

q,N is simply the full matrix algebra Mat(N + 1), i.e. it

is the same algebra as S2
N for q = 1. This is because FN is an irreducible representation of

Uq(su(2)). To see it, we use complete reducibility [32] of the space of polynomials in xi of
degree ≤ k to conclude that it decomposes into the direct sum of irreducible representations
(1)⊕ (3)⊕ (5)⊕· · ·⊕ (2k+1). Counting dimensions and noting that xN1 �= 0 ∈ (2N +1),
it follows that dim(S2

q,N ) = (N + 1)2 = dim Mat(N + 1), and hence

S2
q,N = (1) ⊕ (3) ⊕ (5) ⊕ · · · ⊕ (2N + 1). (2.28)

This is true even if q is a root of unity provided (2.36) below holds, a relation which will
be necessary for other reasons as well. This is the decomposition of the functions on the
q-deformed fuzzy sphere into q-spherical harmonics, and it is automatically truncated.
Note, however, that not all information about a (quantum) space is encoded in its algebra
of functions; in addition, one must specify, e.g., a differential calculus and symmetries. For
example, the action of Uq(su(2)) on S2

q,N is different from the action of U(su(2)) on S2
N .

The covariance ofS2
q,N underUq(su(2)) can also be stated in terms of the quantum adjoint

action. It is convenient to consider the cross-product algebra Uq(su(2))�S2
q,N , which as a

vector space is equal to Uq(su(2)) ⊗ S2
q,N , equipped with an algebra structure defined by

ux = (u(1) � x)u(2). (2.29)

Here the � denotes the action of u ∈ Uq(su(2)) on x ∈ S2
q,N . Conversely, the ac-

tion of Uq(su(2)) on S2
q,N can be written as u � x = u(1)xSu(2). The relation (2.29) of

Uq(su(2))� S2
q,N is automatically realized on the representation FN .

Since both algebras S2
q,N and Uq(su(2)) act on FN and generate the full matrix algebra

Mat(N + 1), it must be possible to express the generators of Uq(su(2)) in terms of the Ẑi .
The explicit relation can be obtained by comparing the relation (2.24) with (2.29). One finds

X+q−H/2 = qN+3Ẑ1, X−q−H/2 = −qN+1Ẑ−1,

q−H = [2]qN+1

[2]q
+ qN+2(q − q−1)√

[2]q
Ẑ0, (2.30)

if acting on FN . In fact, this defines an algebra map

j : Uq(su(2)) → S2
q,N , (2.31)

which satisfies

j (u(1))xj(Su(2)) = u � x (2.32)

for x ∈ S2
q,N and u ∈ Uq(su(2)). This is analogous to results in [5,6]. We shall often

omit j from now on. In particular, S2
q,N is the quotient of the algebra Uq(su(2)) by the

relation (2.25). The relation (2.32) and those of Uq(su(2)) can be verified explicitly using
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(2.20). Moreover, one can verify that it is represented correctly on FN by observing that
X+(A+

1/2)
N |0〉 = 0, which means that (A+

1/2)
N |0〉 is the highest-weight vector of FN .

2.3. Reality structure for q ∈ R

In order to define a real quantum space, we must also construct a star structure, which is
an involutive anti-linear anti-algebra map. For real q, the algebra (2.12) is consistent with
the following star structure

(Aα)
∗ = A+α

, (A+α

)∗ = Aα. (2.33)

This can be verified using the standard compatibility relations of the R̂-matrix with the
invariant tensor [14]. On the generators xi , it implies the relation

x∗
i = gijxj , (2.34)

as well as the equalit

N̂∗ = N̂ .

The algebrasS2
q,N are now precisely Podleś’ “discrete”C∗ algebras S̃2

q,c(N+1). Using (2.30),
this is equivalent to

H ∗ = H, (X±)∗ = X∓, (2.35)

which is the star structure for the compact form Uq(su(2)). It is well-known that there is a
unique Hilbert space structure on the subspaces FN such that they are unitary irreducible
representations of Uq(su(2)). Then the above star is simply the operator adjoint.

2.4. Reality structure for q a phase

When q is a phase, finding the correct star structure is not quite so easy. The difference
with the case q ∈ R is that ∆(u∗) = (∗ ⊗ ∗)∆′(u) for |q| = 1 and u ∈ Uq(su(2)), where
∆′ denotes the flipped coproduct. We shall define a star only on the algebra S2

q,N generated
by the xi , and not on the full algebra generated by Aα and A+

α .
There appears to be an obvious choice at first sight, namely x∗

i = xi , which is indeed
consistent with (2.24). However, it is the wrong choice for our purpose, because it induces
the non-compact star structure Uq(sl(2,R)).

Instead, we define a star structure on S2
q,N as follows. The algebra Uq(su(2)) acts on the

space S2
q,N , which generically decomposes as (1)⊕ (3)⊕ · · · ⊕ (2N + 1). This decompo-

sition should be a direct sum of unitary representations of the compact form of Uq(su(2)),
which means that the star structure on Uq(su(2)) should be (2.35), as it is for real q. There
is a slight complication, because not all finite-dimensional irreducible representations are
unitary if q is a phase [20]. However, all representations with dimension ≤ 2N + 1 are
unitary provided q has the form

q = eiπϕ with ϕ <
1

2N
. (2.36)

This will be assumed from now on.
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As was pointed out before, we can consider the algebra S2
q,N as a quotient of Uq(su(2))

via (2.30). It acts on FN , which is an irreducible representation of Uq(su(2)), and hence
has a natural Hilbert space structure. We define the star on the operator algebra S2

q,N by
the adjoint (that is by the matrix adjoint in an orthonormal basis), hence by the star (2.35)
using the identification (2.30).

There is a very convenient way to write down this star structure on the generators xi ,
similar as in [33]. It involves an element ω of an extension of Uq(su(2)) introduced by
[21] and [23], which implements the Weyl reflection on irreducible representations. The
essential properties are

∆(ω) = R−1ω ⊗ ω, (2.37)

ωuω−1 = θS−1(u), (2.38)

ω2 = vε, (2.39)

where v and ε are central elements in ∈ Uq(su(2)) which take the values q−N(N+2)/2

resp. (−1)N on FN . HereR = R1 ⊗R2 ∈ Uq(su(2))⊗ Uq(su(2)) is the universal R ele-
ment. In a unitary representation of Uq(su(2)), the matrix representing ω in an orthonormal
basis is given the invariant tensor in a certain normalization, πi

j (ω) = −q−N(N+2)/4gij, and

ω∗ = ω−1. This is discussed in detail in [33]. From now on, we denote with ω the element
in S2

q,N which represents this element on FN .

We claim that the star structure on S2
q,N as explained above is given by the following

formula:

x∗
i = −ωxiω

−1 = xjL
−j

k q−2gki, (2.40)

where

L−i

j = πi
j (R

−1
1 )R−1

2 (2.41)

as usual [14]; a priori, L−i

i ∈ Uq(su(2)), but it is understood here as an element of S2
q,N via

(2.30). One can easily verify using (εij
k )

∗ = −ε
ji
k (for |q| = 1) that (2.40) is consistent with

the relations (2.24) and (2.25). In the limit q → 1, L−i

j → δij , therefore (2.40) agrees with
(2.34) in the classical limit. Hence we define the q-deformed fuzzy sphere for q a phase to
be the algebra S2

q,N equipped with the star structure (2.40).
To show that (2.40) is correct in the sense explained above, it is enough to verify that it

induces the star structure (2.35) on Uq(su(2)), since both Uq(su(2)) and S2
q,N generate the

same algebra Mat(N + 1). This can easily be seen using (2.38) and (2.30). A somewhat
related conjugation has been proposed in [24,33] using the universal elementR.

2.5. Invariant integral

The integral on S2
q,N is defined to be the unique functional on S2

q,N which is invariant
under the (quantum adjoint) action of Uq(su(2)). It is given by the projection on the trivial
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sector in the decomposition (2.28). We claim that it can be written explicitly using the
quantum trace:∫

S2
q,N

f (xi) := 4πr2 1

[N + 1]q
Trq(f (xi)) = 4πr2 1

[N + 1]q
Tr(f (xi)q

−H ) (2.42)

for f (xi) ∈ S2
q,N , where the trace is taken on FN . Using S−2(u) = qHuq−H for u ∈

Uq(su(2)), it follows that∫
S2
q,N

fg =
∫
S2
q,N

S−2(g)f. (2.43)

This means that it is indeed invariant under the quantum adjoint action,∫
S2
q,N

u � f (xi) =
∫
S2
q,N

u1f (xi)S(u2) =
∫
S2
q,N

S−1(u2)u1f (xi) = ε(u)

∫
S2
q,N

f (xi),

(2.44)

using the identification (2.30). The normalization constant is obtained from

Trq(1) = Tr(q−H ) = qN + qN−2 + · · · + q−N = [N + 1]q

on FN , so that
∫
S2
q,N

1 = 4πr2.

Lemma 2.1. Let f ∈ S2
q,N . Then

(∫
S2
q,N

f

)∗
=
∫
S2
q,N

f ∗ (2.45)

for real q, and(∫
S2
q,N

f

)∗
=
∫
S2
q,N

f ∗q2H (2.46)

for q a phase, with the appropriate star structure (2.34) respectively (2.40). In (2.46), we
use (2.30).

Proof. Assume first that q is real, and consider the functional

Iq,N (f ) := Tr(f ∗q−H )∗

for f ∈ S2
q,N . Then

Iq,N (u � f ) = Tr((u1fS(u2))
∗q−H )∗ = Tr(S−1((u∗)2)f ∗(u∗)1q−H )∗

= Tr(f ∗(u∗)1S((u∗)2)q−H )∗ = ε(u)Iq,N (f ), (2.47)
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where (S(u))∗ = S−1(u∗) and (∗⊗∗)∆(u) = ∆(u∗) was used. Hence Iq,N (f ) is invariant
as well, and (2.45) follows using uniqueness of the integral (up to normalization). For
|q| = 1, we define

Ĩq,N (f ) := Tr(f ∗qH )∗

with the star structure (2.40). Using (S(u))∗ = S(u∗) and (∗ ⊗ ∗)∆(u) = ∆′(u∗), an
analogous calculation shows that Ĩq,N is invariant under the action of Uq(su(2)), which
again implies (2.46). �

For |q| = 1, the integral is neither real nor positive, hence it cannot be used for a GNS
construction. Nevertheless, it is clearly the appropriate functional to define an action for field
theory, since it is invariant under Uq(su(2)). To find a way out, we introduce an auxiliary
antilinear algebra-map on S2

q,N by

f̄ = S−1(f ∗), (2.48)

where S is the antipode onUq(su(2)), using (2.30). Note that S preserves the relation (2.25),
hence it is well-defined on Sq,N . This is not a star structure, since

¯̄f = S−2f

for |q| = 1. Using (2.30), one finds in particular

xi = −gijxj . (2.49)

This is clearly consistent with the relations (2.24) and (2.25). We claim that (2.46) can now
be stated as(∫

S2
q,N

f

)∗
=
∫
S2
q,N

f̄ for |q| = 1. (2.50)

To see this, observe first that

Tr(S(f )) = Tr(f ), (2.51)

which follows either from the fact that Îq,N (f ) := Tr(S−1(f )qH ) = Tr(S−1(q−Hf )) is
yet another invariant functional, or using ωfω−1 = θS−1(f ) together with the observation
that the matrix representations of X± in a unitary representation are real. This implies

Trq(f
∗q2H ) = Tr(f ∗qH ) = Tr(S(q−HS−1(f ∗))) = Tr(q−HS−1(f ∗)) = Trq(f̄ ),

(2.52)

and (2.50) follows. Now we can write down a positive inner product on S2
q,N .

Lemma 2.2. The sesquilinear forms

(f, g) :=
∫
S2
q,N

f ∗g for q ∈ R, (2.53)
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and

(f, g) :=
∫
S2
q,N

f̄ g for |q| = 1 (2.54)

are hermitian, that is (f, g)∗ = (g, f ), and satisfy

(f, u � g) = (u∗ � f, g) (2.55)

for both q ∈ R and |q| = 1. They are positive definite provided (2.36) holds for |q| = 1,
and define a Hilbert space structure on S2

q,N .

Proof. For q ∈ R, we have

(f, u � g)=
∫
S2
q,N

f ∗u1gSu2 =
∫
S2
q,N

S−1(u2)f
∗u1g =

∫
S2
q,N

(S((u∗)2)∗f ∗((u∗)1)∗g

=
∫
S2
q,N

((u∗)1fS(u∗)2)∗g = (u∗ � f, g), (2.56)

and hermiticity is immediate. For |q| = 1, consider

(f, u � g) =
∫
S2
q,N

f̄ u1gSu2 =
∫
S2
q,N

S−1(u2)S
−1(f ∗)u1g

=
∫
S2
q,N

S−1((u∗)1fS(u∗)2)∗g = (u∗ � f, g). (2.57)

Hermiticity follows using (2.50):

(f, g)∗ =
∫
S2
q,N

¯̄f ḡ =
∫
S2
q,N

S−2(f )ḡ =
∫
S2
q,N

ḡf = (g, f ).

Using the assumption (2.36) for |q| = 1, it is not difficult to see that they are also
positive-definite. �

3. Differential calculus

In order to write Lagrangians, it is convenient to use the notion of an (exterior) dif-
ferential calculus [8,37]. A covariant differential calculus over S2

q,N is a graded bimodule

Ω∗
q,N = ⊕nΩ

n
q,N overS2

q,N which is aUq(su(2))-module algebra, together with an exterior

derivative d which satisfies d2 = 0 and the graded Leibnitz rule. We define the dimension
of a calculus to be the rank of Ω1

q,N as a free right S2
q,N -module.

3.1. First-order differential forms

Differential calculi for the Podleś sphere have been studied before [4,30]. It turns out
that two-dimensional calculi do not exist for the cases we are interested in; however there
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exists a unique three-dimensional module of one-forms. As opposed to the classical case, it
contains an additional “radial” one-form. This will lead to an additional scalar field, which
will be discussed later.

By definition, it must be possible to write any term xi dxj in the form
∑

k dxk fk(x).
Unfortunately the structure of the module of one-forms turn out to be not quadratic, rather
thefk(x) are polynomials of order up to 3. In order to make it more easily tractable and to find
suitable reality structures, we will construct this calculus using a different basis. First, we
will define the bimodule of one-forms Ω1

q,N over S2
q,N which is covariant under Uq(su(2)),

such that {dxi}i is a free right S2
q,N -module basis, together with a map d : S2

q,N → Ω1
q,N

which satisfies the Leibnitz rule. Higher-order differential forms will be discussed below.
Consider a basis of one-forms ξi for i = −1, 0, 1 with the covariant commutation rela-

tions 2

xiξj = R̂kl
ij ξkxl, (3.1)

using the (3) ⊗ (3)R̂-matrix of Uq(su(2)). It has the projector decomposition

R̂kl
ij = q2(P+)kl

ij − q−2(P−)kl
ij + q−4(P 0)kl

ij , (3.2)

where (P 0)kl
ij = (1/[3]q)gklgij, and (P−)kl

ij = ∑
n(1/[2]q2)εkl

n ε
n
ij. The relation (3.1) is

consistent with (2.25) and (2.24), using the braiding relations [31]

R̂kl
ij R̂

rs
luε

ju
n = εkr

t R̂
ts
in, (3.3)

R̂kl
ij R̂

rs
lug

ju = gkrδsi , (3.4)

and the quantum Yang–Baxter equation R̂12R̂23R̂12 = R̂23R̂12R̂23, in shorthand-notation
[14]. We define Ω1

q,N to be the free right module over S2
q,N generated by the ξi . It is clearly

a bimodule over S2
q,N . To define the exterior derivative, consider

Θ := x · ξ = xiξj g
ij, (3.5)

which is a singlet under Uq(su(2)). It turns out (see Appendix B) that [Θ, xi] �= 0 ∈ Ω1
q,N .

Hence

df := [Θ, f (x)] (3.6)

defines a non-trivial derivation d : S2
q,N → Ω1

q,N , which completes the definition of the
calculus up to first-order. In particular, it is shown in Appendix B that

dxi = −ΛNε
nk
i xnξk + (q − q−1)(qxiΘ − r2q−1ξi). (3.7)

Since all terms are linearly independent, this is a three-dimensional first-order differential
calculus, and by the uniqueness it agrees with the three-dimensional calculus in [4,30]. In
view of (3.7), it is not surprising that the commutation relations between the generators

2 They are not equivalent to uξi = u(1) � ξiu(2).
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xi and dxi are very complicated [4]; will not write them down here. The meaning of the
ξ -forms will become more clear in Section 3.4.

Using (A.5) and the relation ξ · x = q4x · ξ , one finds that

x · dx = (−Λ2
N + ([2]q2 − 2)r2)Θ.

On the other hand, this must be equal to xiΘxjg
ij − r2Θ , which implies that

xiΘxjg
ij = αr2Θ

with

α = [2]q2 − 1 − Λ2
N

r2
= 1 − 1

CN

. (3.8)

Combining this, it follows that

dx · x = r2 1

CN

Θ = −x · dx. (3.9)

Moreover, using the identity (A.7) one finds

ε
jk
i xj dxk = (α − q2)r2ε

jk
i xj ξk − ΛNr

2ξi + q2ΛNxiΘ, (3.10)

which together with (3.7) yields

ξi = q2

r2
Θxi + q2CNΛN

r4
ε

jk
i xj dxk − q2(1 − q2)

CN

r2
dxi. (3.11)

3.2. Higher-order differential forms

Podleś [30] has constructed an extension of the above three-dimensional calculus includ-
ing higher-order forms for a large class of quantum spheres. This class does not include
ours, however, hence we will give a different construction based on ξ -variables, which will
be suitable for q a phase as well.

Consider the algebra

ξiξj = −q2R̂kl
ij ξkξl, (3.12)

which is equivalent to (P+)ijklξiξj = 0, (P 0)
ij
klξiξj = 0, where P+ and P 0 are the pro-

jectors on the symmetric components of (3) ⊗ (3) as above; hence the product is totally
(q-)antisymmetric. It is not hard to see (and well-known) that the dimension of the space
of polynomials of order n in the ξ is (3, 3, 1) for n = (1, 2, 3), and zero for n > 3, as
classically. We define Ωn

q,N to be the free right S2
q,N -module with the polynomials of or-

der n in ξ as basis; this is covariant under Uq(su(2)). Then Ωn
q,N is in fact a (covariant)

S2
q,N -bimodule, since the commutation relations (3.1) between x and ξ are consistent with

(3.12), which follows from the quantum Yang–Baxter equation. There remains to construct
the exterior derivative. To find it, we first note that (perhaps surprisingly) Θ2 �= 0, rather

Θ2 = −q−2ΛN

[2]q2
εijkxiξj ξk. (3.13)



322 H. Grosse et al. / Journal of Geometry and Physics 38 (2001) 308–342

The εijk is defined in (A.8). By a straightforward but lengthy calculation which is sketched
in Appendix B, one can show that

dxi dxj g
ij + r2

CN

Θ2 = 0. (3.14)

We will show below that an extension of the calculus to higher-order forms exists; then this
can be rewritten as

dΘ − Θ2 = 0. (3.15)

The fact that Θ2 �= 0 makes the construction of the extension more complicated, since now
α(n) → [Θ,α(n)]± does not define an exterior derivative. To remedy this, the following
observation is useful: the map

∗H : Ω1
q,N → Ω2

q,N , ξi �→ −q−2ΛN

[2]q2
ε

jk
i ξj ξk (3.16)

defines a left- and right S2
q,N -module map; in other words, the commutation relations be-

tween ξi and xj are the same as between ∗H (ξi) and xj . This follows from the braiding
relation (3.3). This is in fact the natural analogue of the Hodge-star on one-forms in our
context, and will be discussed further below. Here we note the important identity

α(∗Hβ) = (∗Hα)β (3.17)

for any α, β ∈ Ω1
q,N , which is proved in Appendix B. Now (3.13) can be stated as

∗H (Θ) = Θ2, (3.18)

and applying ∗H to df = [Θ, f (Y )] one obtains

[Θ2, f (x)] = ∗H df (x). (3.19)

Now we define the map

d : Ω1
q,N → Ω2

q,N , α �→ [Θ,α]+ − ∗H (α). (3.20)

It is easy to see that this defines a graded derivation from Ω1
q,N to Ω2

q,N , and the previous
equation implies immediately that

(d ◦ d)f = 0.

In particular,

dξi = (1 − q2)ξΘ + q−2ΛN

[2]q2
ε

jk
i ξj ξk. (3.21)

To complete the differential calculus, we extend it to Ω3
q,N by

d : Ω2
q,N → Ω3

q,N , α(2) �→ [Θ,α(2)]. (3.22)
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As is shown in Appendix B, this satisfies indeed

(d ◦ d)α = 0 for any α ∈ Ω1
q,N .

It is easy to see that the map (3.22) is non-trivial. Moreover there is precisely one monomial
of order 3 in the ξ variables, given by

Θ3 = −q−6ΛNr
2

[2]q2 [3]q
εijkξiξj ξk, (3.23)

which commutes with all functions on the sphere,

[Θ3, f ] = 0 (3.24)

for all f ∈ S2
q,N . Finally, we complete the definition of the Hodge star operator by

∗H (1) = Θ3, (3.25)

and by requiring that (∗H )2 = id.

3.3. Star structure

A ∗-calculus (or a real form ofΩ∗
q,N ) is a differential calculus which is a graded ∗-algebra

such that the star preserves the grade, and satisfies [37]

(α(n)α(m))∗ = (−1)nm(α(m))∗(α(n))∗, (dα(n))∗ = d(α(n))∗ (3.26)

for α(n) ∈ Ωn
q,N ; moreover, the action of Uq(su(2)) must be compatible with the star on

Uq(su(2)). Again, we have to distinguish the cases q ∈ R and |q| = 1.

1. q ∈ R. In this case, the star structure must satisfy

(dxi)
∗ = gij dxj , x∗

i = gijxj , (3.27)

which by (2.25) implies

Θ∗ = −Θ. (3.28)

Using (3.11), it follows that

ξ∗
i = −gijξj + q2(q − q−1)

[2]qCN

r2
gij dxj

= −gijξj − q2(q − q−1)
[2]qCN

r2
gij(ΛNε

kl
j xkξl

−(q − q−1)(qxjΘ − q−1r2ξj )). (3.29)

To show that this is indeed compatible with (3.1), one needs the following identity

q2(q − q−1)
[2]qCN

r2
(dxixj − R̂kl

ij xk dxl) = (1 − (R̂2)kl
ij )ξkxl, (3.30)

which can be verified with some effort, see Appendix B. In particular, this shows that
if one imposed xiξj = (R̂−1)kl

ij ξkxl instead of (3.1), one would obtain an equivalent
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calculus. This is unlike in the flat case, where one has two inequivalent calculi [15,28].
Moreover, one can show that this real form is consistent with (3.12).

2. |q| = 1. In view of (2.40), it is easy to see that the star structure in this case is

(ξi)
∗ = q−4ωξiω

−1, x∗
i = −ωxiω

−1. (3.31)

Recall that ω is a particular unitary element of S2
q,N introduced in Section 2.4.

It is obvious using (R̂kl
ij )

∗ = (R̂−1)lkji that this is an involution which is consistent with
(3.1), and one can verify that

Θ∗ = −Θ. (3.32)

This also implies

[ω,Θ] = 0,

hence

(dxi)
∗ = −ω dxi ω

−1. (3.33)

Finally, ∗H is also compatible with the star structure:

(∗H (α))∗ = ∗H (α∗), (3.34)

where α ∈ Ω1
q,N for both q ∈ R and |q| = 1. This is easy to see for α = ξi in the latter

case, and for α = dxi in the case q ∈ R. This implies that indeed (dα(n))∗ = d(α(n))∗

for all n.

We summarize the above results.

Theorem 3.1. The definitions (3.20) and (3.21) define a covariant differential calculus on
Ω∗
q,N = ⊕3

n=0Ω
n
q,N over S2

q,N with dim(Ωn
q,N ) = (1, 3, 3, 1) for n = (0, 1, 2, 3). More-

over, this is a ∗-calculus with the star structures (3.27) and (3.31) for q ∈ R and |q| = 1,
respectively.

3.4. Frame formalism

On many non-commutative spaces [5,26], it is possible to find a particularly convenient
set of one-forms (a “frame”) θa ∈ Ω1, which commute with all elements in the function
spaceΩ0. Such a frame exists here as well, and in terms of the ξi variables, it takes a similar
form to that of [5]. Consider the elements

θa = ΛNS(L
+a

j )gjkξk ∈ Ω1
q,N , (3.35)

λa = 1

ΛN

xiL
+i

a ∈ S2
q,N , (3.36)

where as usual

L+i

j = R1π
i
j (R2), (3.37)
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S(L+i

j ) = R−1
1 πi

j (R
−1
2 ) (3.38)

are elements of Uq(su(2)), which we consider here as elements in Sq,N via (2.31). Then
the following lemma holds.

Lemma 3.2.

[θa, f ] = 0, (3.39)

df = [λa, f ]θa, (3.40)

Θ = xiξj g
ij = λaθ

a. (3.41)

for any f ∈ S2
q,N . In this sense, the λa are dual to the frame θb. They satisfy the relations

λaλbg
ba = 1

q4Λ2
N

r2, λaλbε
ba
c = − 1

q2
λc, θaθb = −q2R̂ba

cd θ
dθc, (3.42)

dθa = λb[θa, θb]+ + 1

q2[2]q2
εabcθ

cθb, ∗Hθa = − 1

q2[2]q2
εabcθ

cθb,

θaθbθc = −Λ2
N

q6

r2
εcbaΘ3. (3.43)

In particular in the limit q = 1, this becomes λa = (1/ΛN)xa , and dxa = −εcabxcθ
b, using

(3.7).

Proof. Using

S(L+i

j )xk = xl(R̂
−1)lnjkS(L

+i

n )

(which follows from (2.29)) and ∆(S(L+i

j )) = S(L+n

j ) ⊗ S(L+i

n ), it is easy to check that

[θa, xi] = 0 for all i, a, and (3.39) follows. (3.41) follows immediately from L+i

a S(L+a

j ) =
δij , and to see (3.43), one needs the well-known relation L+l

r L+k

s gsr = gkl, as well as

L+l

r L+k

s εsr
n = εkl

mL
+m

n ; the latter follows from the quasitriangularity of Uq(su(2)). The
commutation relations among the θ are obtained as in [5] by observing

θaθb = ΛNθ
aS(L+b

n )gnlξl = ΛNS(L
+b

n )θagnlξl = Λ2
NS(L

+b

n )S(L+a

j )gjkgnlξkξl,

(3.44)

using the commutation relations R̂kl
ij SL+i

n SL+j

m = SL+k

i SL+l

j R̂
ij
nm, as well as (3.4). The

remaining relations can be checked similarly. �

3.5. Integration of forms

As classically, it is natural to define the integral over the forms of the highest degree,
which is 3 here. Since any α(3) ∈ Ω3

q,N can be written in the from α(3) = fΘ3, we define∫
α(3) =

∫
fΘ3 :=

∫
S2
q,N

f (3.45)
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by (2.42), so that Θ3 is the volume form. This definition is natural, since [Θ3, f ] = 0.
Integrals of forms with degree �= 3 will be set to zero.

This integral satisfies an important cyclic property, as did the quantum trace (2.43). To
formulate it, we extend the map S2 from S2

q,N to Ω∗
q,N by

S2(ξi) = q−H � ξi,

extended as an algebra map. Then the following holds (see Appendix B):

∫
αβ =

∫
S−2(β)α (3.46)

for any α, β ∈ Ω∗
q,N with deg(α)+deg(β) = 3. Now Stokes theorem follows immediately:

∫
dα(2) =

∫
[Θ,α(2)] = 0 (3.47)

for any α(2) ∈ Ω2
q,N , because S2Θ = Θ . This purely algebraic derivation is also valid on

some other spaces [35].
Finally we establish the compatibility of the integral with the star structure. From Θ∗ =

−Θ and (2.45), we obtain

(∫
α(3)

)∗
= −

∫
(α(3))∗ for q ∈ R. (3.48)

For |q| = 1, we have to extend the algebra map f̄ (2.48) to Ω∗
q,N . It turns out that the

correct definition is

ξ̄i = −q−4gijξj + q−2(q − q−1)
[2]qCN

r2
gij dxj , (3.49)

extended as an antilinear algebra map; compare (3.29) for q ∈ R. To verify that this is
compatible with (3.1) and (3.12) requires the same calculations as to verify the star structure
(3.29) for q ∈ R. Moreover one can check using (3.10) that

dxi = −gij dxj , (3.50)

which implies that Θ̄ = Θ , and

∗H (α) = ∗H (ᾱ), dα = dᾱ, ¯̄α = S−2α (3.51)

for any α ∈ Ω∗
q,N . Hence we have

(∫
α(3)

)∗
=
∫

α(3) for |q| = 1. (3.52)
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4. Actions and fields

4.1. Scalar fields

With the tools provided in the previous sections, it is possible to construct actions for
two-dimensional Euclidean field theories on the q-deformed fuzzy sphere.

We start with scalar fields, which are simply elements ψ ∈ S2
q,N . The obvious choice for

the kinetic term is

Skin[ψ] = i
r2

Λ2
N

∫
(dψ)∗ ∗H dψ for q ∈ R,

Skin[ψ] = r2

Λ2
N

∫
dψ ∗H dψ for |q| = 1, (4.1)

which, using Stokes theorem, can equivalently be written in the form

Skin[ψ] = −i
r2

Λ2
N

∫
ψ∗(d ∗H d)ψ = − r2

Λ2
N

i

∫
S2
q,N

ψ∗(∗H d ∗H d)ψ for q ∈ R,

Skin[ψ] = − r2

Λ2
N

∫
ψ̄(d ∗H d)ψ = − r2

Λ2
N

∫
S2
q,N

ψ̄(∗H d ∗H d)ψ for |q| = 1.

(4.2)

They are real

Skin[ψ]∗ = Skin[ψ] (4.3)

for both q ∈ R and |q| = 1, using the reality properties established in the previous sections.
The fields can be expanded in terms of the irreducible representations

ψ(x) =
∑
K,n

aK,nψK,n(x) (4.4)

according to (2.28), with coefficients aK,n ∈ C; this corresponds to the first-quantized case.
However, in order to ensure invariance of the actions under Uq(su(2)) (or a suitable subset
thereof), we must assume that Uq(su(2)) acts on products of fields via the q-deformed
coproduct. This can be implemented consistently only after a “second quantization”, such
that the coefficients in (4.4) generate a Uq(su(2))-module algebra. This will be presented
in a forthcoming paper [18].

One can also consider real fields, which have the form

ψ(x)∗ = ψ(x) for q ∈ R, ψ(x) = ψ(x) for |q| = 1. (4.5)

This is preserved under the action of a certain real sector G ⊂ Uq(su(2)) (4.30); the
discussion is completely parallel to the one below (4.31) in the next section, hence we will
not give it here.
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Clearly ∗H d ∗H d is the analog of the Laplace operator for functions, which can also be
written in the usual form dδ + δd, with δ = ∗H d ∗H . It is hermitian by construction. We
wish to evaluate it on the irreducible representations ψK ∈ (2K + 1), that is, on spin-K
representations. The result gives the following lemma.

Lemma 4.1. If ψK ∈ S2
q,N is a spin K representation, then

∗H d ∗H dψK = 2

[2]qCN

[K]q [K + 1]qψK. (4.6)

The proof is in Appendix B.
It is useful to write down explicitly the hermitian forms associated to the above kinetic

action. Consider

Skin[ψ,ψ ′] = i
r2

Λ2
N

∫
(dψ)∗ ∗H dψ ′ for q ∈ R,

Skin[ψ,ψ ′] = r2

Λ2
N

∫
dψ ∗H dψ ′ for |q| = 1. (4.7)

Using Lemma 2.2, it follows immediately that they satisfy

Skin[ψ,ψ ′]∗ = Skin[ψ ′, ψ], Skin[ψ, u � ψ ′] = Skin[u∗ � ψ,ψ ′] (4.8)

for both q ∈ R and |q| = 1. To be explicit, let ψK,n be an orthonormal basis of (2K + 1).
We can be assume that it is a weight basis, so that n labels the weights from −K to K . Then
it follows that

Skin[ψK,n, ψK ′,m] = cKδK,K ′δn,m (4.9)

for some cK ∈ R. Clearly one can also consider interaction terms, which could be of the
form

Sint[ψ] =
∫
S2
q,N

ψψψ, (4.10)

or similarly with higher degree.

4.2. Gauge fields

Gauge theories arise in a very natural way on S2
q,N . For simplicity, we consider only the

analog of the abelian gauge fields here. They are simply one-forms

B =
∑

Baθ
ar ∈ Ω1

q,N , (4.11)

which we expand in terms of the frames θa introduced in Section 3.4. Notice that they have
three independent components, which reflects the fact that calculus is three-dimensional.
Loosely speaking, the fuzzy sphere does see a shadow of the three-dimensional embedding
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space. One of the components is essentially radial and should be considered as a scalar
field, however it is naturally tied up with the other two components of B. We will impose
the reality condition

B∗ = B for q ∈ R, B̄ = B for |q| = 1. (4.12)

Since only three-forms can be integrated, the most simple candidates for Langrangians that
can be written down have the form

S3 = 1

r2Λ2
N

∫
B3, S2 = 1

r2Λ2
N

∫
B ∗H B, S4 = 1

r2Λ2
N

∫
B2 ∗H B2.

(4.13)

They are clearly real, with the reality condition (4.12); the factor i for real q is omitted here.
We also define

F := B2 − ∗HB (4.14)

for reasons which will become clear below. The meaning of the field B becomes obvious
if one writes it in the form

B = Θ + A, Ba = 1

r
λa + Aa. (4.15)

While B and Θ become singular in the limit N → ∞, A remains well-defined. Using

F = dA + A2,

∫
AΘ2 =

∫
dAΘ =

∫
∗HAΘ,∫

A2Θ = 1

2

∫
(A dA + A ∗H A), (4.16)

which follow from (3.20), one finds

S2 = 1

r2Λ2
N

∫
A ∗H A + 2AΘ2,

S3 = 1

r2Λ2
N

∫
A3 + 3

2
(A dA + A ∗H A) + 3AΘ2 + Θ3, (4.17)

and

SYM := 1

r2Λ2
N

∫
F ∗H F = 1

r2Λ2
N

∫
(dA + A2) ∗H (dA + A2). (4.18)

The latter action (which is a linear combination of S2, S3, and S4) is clearly the analog of
the Yang–Mills action, which in the classical limit contains a gauge field and a scalar, as
we will see below. In the limit q → 1, it reduces to the action considered in [17].

The actions S3 and S2 alone contain terms which are linear in A, which would indicate
that the definition of A (4.15) is not appropriate. However, the linear terms cancel in the
following linear combination

SCS := 1

3
S3 − 1

2
S2 = − 2π

3Λ2
N

+ 1

2

1

r2Λ2
N

∫
A dA + 2

3
A3. (4.19)
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Notice that the “mass term” A ∗H A has also disappeared. This form is clearly the analog
of the Chern–Simons action. It is very remarkable that it exists on S2

q,N , which is related to
the fact that the calculus is three-dimensional. In the case q = 1, this is precisely what has
been found recently in the context of two-branes on the SU(2) WZW model [2].

In terms of the components (4.11), B2 = BaBbθ
aθbr2, and ∗HB = −(r/q2[2]q2)

Baε
a
bcθ

cθb. Moreover, it is easy to check that

∗H (θbθc) = −q2 εcb
a θa, θa ∗H θb = Λ2

N

q4

r2
gbaΘ3,

θaθb ∗H θcθd = [2]q2Λ
2
N

q8

r2
(P−)dc

a′b′gb
′bga

′aΘ3 = Λ2
N

q8

r2
εdc
n εba

m gnmΘ3. (4.20)

Hence

F =
(
BaBb + 1

q2r[2]q2
Bcε

c
ba

)
θaθbr2

=
(
λa

r
Ab + Aa

λb

r
+ AaAb + 1

q2r[2]q2
Acε

c
ba

)
θaθbr2 = Fabθ

aθbr2, (4.21)

where we define Fab to be totally antisymmetric, i.e.Fab = (P−)b′a′
ba Fa′b′ using (3.42). This

yields

SYM = q8[2]q2

∫
S2
q,N

FabFcd(P
−)dc

a′b′gb
′bga

′a. (4.22)

To understand these actions better, we write the gauge fields in terms of “radial” and
“tangential” components,

Aa = xa

r
φ + At

a, (4.23)

where φ is defined such that

xaA
t
bg

ab = 0; (4.24)

this is always possible. However to get a better insight, we consider the case q = 1, and take
the classical limit N → ∞ in the following sense: for a given (smooth) field configuration
in S2

N , we use the sequence of embeddings of S2
q,N to approximate it for N → ∞. Then

terms of the form [At
a, A

t
b] vanish in the limit (since the fields are smooth in the limit). The

curvature then splits into a tangential and radial part, Fab = F t
ab + F

φ

ab, where 3

F t
ab = 1

2r
([λa,A

t
b] − [λb,A

t
a] + At

c ε
c
ba),

F
φ

ab = 1

2r2
(εcabxcφ + [λa, φ]xb − [λb, φ]xa). (4.25)

3 The pull-back of F to the two-sphere in the classical case is unaffected by this split.
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Moreover,

xaF t
ab → 1

4r
[xaλa,A

t
b] − 1

2r
[λb, x

aAt
a] = 0, xa[λa, φ] → 1

2
[xaλa, φ] = 0

(4.26)

in the classical limit, which implies that∫
S2
F t

abF
φab =

∫
S2

1

2r2
εnabxnφF

tab
,

∫
S2
F
φ

abF
φab =

∫
S2

1

2r2
(φ2 + [λa, φ][λa, φ])

in the limit. Therefore we find

SYM = −
∫
S2

(
2F t

abF
t
ab + 2

r2
εnabxnφF

tab + 1

r2
(φ2 + [λa, φ][λa, φ])

)
(4.27)

in the limit, as in [17]. Similarly, the Chern–Simons action (4.19) becomes

SCS → − 2π

3Λ2
N

+ 1

2r2Λ2
N

∫
dAt(At + 2ΛNΘφ) − Λ2

Nφ
2Θ3

= − 2π

3Λ2
N

+ 1

2r

∫
S2
F t

ab

(
At
c + 2

xc

r
φ
)
εabc − 1

2r2

∫
S2
φ2 (4.28)

for N → ∞. In the flat limit r → ∞, the term F t
abA

t
cε

abc vanishes because of (4.26),
leaving the F − φ coupling term (after multiplying with r).

Back to finite N and q �= 1. To further justify the above definition of curvature (4.14), we
consider the zero curvature condition, F = 0. In terms of the B fields, this is equivalent to

εba
c BaBb + 1

q2r
Bc = 0, (4.29)

which is (up to rescaling) the same as Eq. (2.24) with opposite multiplication; 4 in particular,
the solutionsBa ∈ S2

q,N are precisely all possible representations ofUop
q (su(2)) in the space

of N +1-dimensional matrices. They are of course classified by the number of partitions of
Mat(N+1) into blocks with sizes n1, . . . , nk such that

∑
ni = N+1, as in the case q = 1.

Gauge invariance. We have seen that actions which describe gauge theories in the limit
q = 1 arise very naturally on S2

q,N (as on certain other higher-dimensional q-deformed
spaces [34,44]). However, it is less obvious in which sense they are actually gauge-invariant
for q �= 1. For q = 1, the appropriate gauge transformation is B → UBU−1, for a unitary
element U ∈ S2

N . This transformation does not work for q �= 1, because of (3.46). Instead,
we propose the following: let

H = {γ ∈ Uq(su(2)) : ε(γ ) = 0, γ ∗ = Sγ },
G = {γ ∈ Uq(su(2)) : ε(γ ) = 1, γ ∗ = Sγ } = eH (4.30)

for both |q| = 1 and q ∈ R. Notice that the reality condition can also be written as γ̄ = γ

using (2.48). Clearly H is a subalgebra (without 1) of Uq(su(2)), and G is closed under

4 This can be implemented, e.g., using the antipode of Uq(su(2)).
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multiplication. Using the algebra map j (2.31),H can be mapped to some real sector of the
space of functions on the fuzzy sphere.

Now consider the following “gauge” transformations:

B → j (γ(1))Bj(Sγ(2)) for γ ∈ G. (4.31)

It can be checked easily that these transformations preserve the reality conditions (4.12) for
both real q and |q| = 1. In terms of components B = Baθ

ar , this transformation is simply
(suppressing j )

Ba → γ(1)BaSγ(2) = γ � Ba, (4.32)

which is the rotation of the fields Ba ∈ S2
q,N considered as scalar fields, 5 i.e. the rotation

γ ∈ Uq(su(2)) does not affect the index a because of (3.39). In terms of the Aa variables,
this becomes

Aaθ
a → γ(1)AaSγ(2)θ

a + γ(1) d(Sγ(2)) = (γ � Aa)θ
a + γ(1) d(Sγ(2)), (4.33)

using (3.6) and (3.39). Hence these transformations are a mixture of rotations of the com-
ponents (first term) and “pure gauge transformations” (second term). Moreover, the radial
and tangential components get mixed.

To understand these transformations better, consider q = 1. Then we have two transfor-
mations of a given gauge fieldBa , the first by conjugation with an unitary elementU ∈ S2

q,N ,
and the second by (4.31). We claim that the respective spaces of inequivalent gauge fields
are in fact equivalent. Indeed, choose, e.g., a = 1; then there exists a unitaryU ∈ S2

q,N such

that U−1BaU is a diagonal matrix with real entries. On the other hand, using a suitable
γ ∈ G and recalling (2.28), one can transform Ba into the form Ba = ∑

ibi(x0)
i with

real bi , which is again represented by a diagonal matrix in a suitable basis. Hence at least
generically, the spaces of inequivalent gauge fields are equivalent.

One can also see more intuitively that (4.33) corresponds to an abelian gauge trans-
formation in the classical limit. Consider again γ (x) = eih(x) with h(x)∗ = −Sh(x),
approximating a smooth function in the limit N → ∞. Using properly rescaled variables
xi , one can see using (2.30) that if viewed as an element in U(su(2)), γ approaches the
identity, that is γ � Aa(x) → Aa(x) in the classical limit. Now write the functions on S2

N

in terms of the variables x1 and x−1, for example. Then (2.30) yields

(1 ⊗ S)∆(xi) = xi ⊗ 1 − 1 ⊗ xi (4.34)

for i = ±1, and one can see that

γ(1)[λi, Sγ(2)] ≈ ∂ih(xi) (4.35)

in the (flat) classical limit. Hence (4.33) indeed becomes a gauge transformation in the
classical limit.

5 Notice that this is not the rotation of the one-form B, because γ(1)ξiSγ(2) �= γ � ξi .
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To summarize, we found that the set of gauge transformations in the non-commutative
case is a (real sector of a) quotient of Uq(su(2)), and can be identified with the space
of (real) functions on S2

q,N using the map j . However, the transformation of products of
fields is different from the classical case. Classically, the gauge group acts on products
“componentwise”, which means that the coproduct is trivial. Here, we must assume that
Uq(su(2)) acts on products of fields via the q-deformed coproduct, so that the above actions
are invariant under gauge transformations, by (2.44). In particular, the “gauge group” has
become a real sector of a Hopf algebra. Of course, this can be properly implemented on the
fields only after a “second quantization”, as in the case of rotation invariance (see Section
4.1). This will be presented in a forthcoming paper [18]. This picture is also quite consistent
with observations of a BRST-like structure in Uq(so(2, 3)) at roots of unity, see [34,44].

Finally, we point out that the above actions are invariant under a global Uq(su(2)) sym-
metry, by rotating the frame θa .

5. Drinfeld twists and the relation with DDD-branes

Finally we relate our q-deformed fuzzy sphere to the effective algebra of functions on
spherical D-branes in the SU(2) WZW model at level k, as determined by Alekseev et al.
[1]. Their result is as follows. The D-branes (more precisely their boundary conditions)
are classified by an integer N which satisfies 6 0 ≤ N ≤ k. The Hilbert space of the
associated boundary conformal field theory decomposes into irreducible representations
of the affine Lie algebra ˆsu(2)k . One can assign abstract elements {Y I

i }I,i to the boundary
vertex operators (primary fields), where I ranges from 0 to min(N, k−N), and −I ≤ i ≤ I .
The {Y I

i }i form irreducible spin I representations of the horizontal algebra su(2), and are
interpreted as the analog of spherical harmonics on the D-brane; in particular, there exist
only finitely many of them. The algebra induced by the OPE of the corresponding boundary
vertex operators is given by [1]

Y I
i A Y J

j =
∑
K,k

[
I J K

i j k

]{
I J K

N/2 N/2 N/2

}
q

YK
k with q = eiπ/k+2,

(5.1)

where the sum goes from K = 0 to min(I + J, k − I − J,N, k − N). This is a finite,
non-commutative, quasiassociative algebra A. Here the first bracket denotes the Clebsch–
Gordon coefficients of SU(2), and the curly brackets denote the q-deformed 6J -symbols
of Uq(su(2)). The latter arise from the fusion matrices of the underlying conformal field
theory, which have been known to be related to quantum groups for a long time [3].

In the present paper, we only consider roots of unity q which satisfy (2.36). This means
that 2N ≤ k in the above situation, so that we can only consider a certain subset of the
allowed boundary conditions here. There will be some qualitative changes in the remaining
cases, which we do not consider in the present paper.

6 N is denoted by 2α in [1].
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The reason for the non-associativity of the algebra A is a mixing of q-deformed and
undeformed group theory objects. However as was already indicated in [1], one can some-
times “twist” this algebra using a Drinfeld twist into an associative one. In particular this
can be done if q satisfies (2.36), in the following way: On the same vector space A, we
define a new multiplication by

aÃb := (F−1(1) � a) A (F−1(2) � b) = A(F−1 � (a ⊗ b)). (5.2)

Here a, b ∈ A, and

F = F (1) ⊗ F (2) ∈ U(g) ⊗ U(g) (5.3)

is the Drinfeld twist [10,40] in Sweedler-notation. We can ignore some fine points here
since we only consider certain representations of F . The twist relates the undeformed
Clebsch–Gordan coefficients to the deformed ones as follows:

[
I J K

i j k′

]
(g(K))k

′k =
[
I J K

i′ j ′ k′

]
q

(g(K)
q )k

′kπi′
i (F

(1))π
j ′
j (F

(2)). (5.4)

Here we have raised indices using (g
(K)
q )k

′k , which is the q-deformed invariant tensor,
and we will assume that (g(K))k

′k = δk
′k (in an orthonormal basis). It should be noted

that even though the abstract element F exists only for generic (more precisely formal)
q, the representations of F which are needed above do exist at roots of unity, assuming
the restrictions (2.36) on q; this is because the Clebsch–Gordan decomposition is then still
analytic in q. Hence the twisted multiplication rule for the generators Y I

i is

Y I
i ÃY

J
j =

∑
K,k

[
I J K

i j k′

]
q

(g(K)
q )k

′k
{

I J K

N/2 N/2 N/2

}
q

YK
k . (5.5)

As was already pointed out in [1], this defines an associative algebra. We claim that this is
precisely the algebra S2

q,N , which in turn is the matrix algebra Mat(N + 1). To see this, we

reconsider the algebra S2
q,N from a group-theoretic point of view.

Let now Y I
i ∈ S2

q,N be an irreducible spin I representation of Uq(su(2)), according to
the decomposition (2.28). In acts on the Fock space FN (2.16), which in turn is a spin N/2
representation of Uq(su(2)), with a basis of the form (A+ · · ·A+)r |0〉. Hence if we denote
with π(Y I

i )
r
s the matrix which represents the operator Y I

i on FN , we can conclude that it is
proportional to the Clebsch–Gordan coefficient of the decomposition (2I+1)⊗(N+1) →
(N + 1); this is the Wigner–Eckart theorem. Hence in a suitable normalization of the basis
Y I
i , we can write

π(Y I
i )

r
s = (g

(N/2)
q )rr′

[
N/2 I N/2
r ′ i s

]
q

=
[
I N/2 N/2
i s r ′

]
q

(g
(N/2)
q )r

′r . (5.6)
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Fig. 1. Derivation of the algebra (5.5).

Therefore the matrix representing the operator Y I
i Y

J
j is given by

π(Y I
i )

r
sπ(Y

J
j )

s
t = (g

(N/2)
q )rr′

[
N/2 I N/2
r ′ i s

]
q

(g
(N/2)
q )ss′

[
N/2 J N/2
s′ j t

]
q

=
∑
K

{
N/2 J N/2
I N/2 K

}
q

[
I J K

i j k′

]
q

(g(K)
q )k

′k

×
[
K N/2 N/2
k t r ′

]
q

(g
(N/2)
q )r

′r

=
∑
K

{
I J K

N/2 N/2 N/2

}
q

[
I J K

i j k′

]
q

(g(K)
q )k

′k π(YK
k )rt .

(5.7)

Here we used the identity{
N/2 J N/2
I N/2 K

}
q

=
{

I J K

N/2 N/2 N/2

}
q

, (5.8)

which is proved in [22]. This calculation is represented graphically in Fig. 1, which shows
that it essentially reduces to the definition of the 6j -symbols. Therefore the algebra of S2

q,N

is precisely (5.5), which is a twist of the algebra (5.1) found in [1]. In a sense, this twisting
is similar to deformation quantization; however, S2

q,N is aUq(su(2))-module algebra, while
(5.1) is a U(su(2))-module algebra.

6. Summary and outlook

In this paper, we have studied the q-deformed fuzzy sphere S2
q,N , which is an associative

algebra which is covariant under Uq(su(2)), for real q and q a phase. In the first case, this
is the same as the “discrete series” of Podleś quantum spheres. We develop the formalism
of differential forms and frames, as well as integration. We then briefly consider scalar and
gauge field theory on this space. It appears that S2

q,N is a nice and perhaps the simplest
example of quantum spaces which are covariant under a quantum group. This makes it
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particularly well suited for studying field theory, an endeavor which has proved to be rather
difficult on other q-deformed spaces. We are able to write hermitian actions for scalar and
gauge fields, including analogs of Yang–Mills and Chern–Simons actions. In particular, the
form of the actions for gauge theories suggests a new type of gauge symmetry, where the
role of the gauge group is played by Uq(su(2)), which can be mapped onto the space of
functions on S2

q,N . This suggests that formulating field theory on quantized spaces which
are less trivial than the ones corresponding to a Moyal product on flat spaces requires new
approaches, and may lead to interesting new insights.

The main motivation for doing this is the discovery [1] that a quasi-associative twist of
S2
q,N arises on spherical D-branes in the SU(2)k WZW model, for q a root of unity. In view

of this result, we hope that the present formalism may be useful to formulate a low-energy
effective field theory induced by open strings ending on the D-branes. This in turn inspires
one to consider some kind of second quantization of field theories on S2

q,N , corresponding
to a loop expansion and many-particle states. It is quite interesting that also from a more
formal point of view, such a second quantization turns out to be necessary for a satisfactory
definition of symmetries in such a field theory. This will be presented in a future publication
[18]. Moreover, while the question of using either the quasi-associative algebra (5.1) or the
associativeS2

q,N may ultimately be a matter of taste, the latter does suggest certain forms for
Lagrangians, induced by the differential calculus. It would be very interesting to compare
this with a low-energy effective action induced from string theory.

In this paper we have only considered spaces which correspond to a subset of the allowed
boundary conditions discussed in [1]. The remaining cases will show some qualitatively
new features, and are postponed for future work.

7. Note added in proof

If |q| = 1, them the expression Sγ in (4.30) and implicity in (4.12) should be replaced
by S0(γ ) = qH/2S(γ )q−H/2.
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Appendix A. Invariant tensors

Before giving the explicit forms of the invariant tensors used in this paper, we briefly
explain our conventions and the relation to the literature. The quantum spaces in [14] and
in much of the standard literature are defined as left Funq(G)-comodule algebras. This is
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equivalent to right Uq(g)-module algebras. However it is more intuitive to work with left
module algebras. This can be achieved using the antipode, u � f (x) := f (x) � S(u); more-
over if πi

j (u) is the fundamental representation, then u � xi = xjπ
j
i (u), where xi = gijx

j .
However the coproduct then becomes reversed, u� fg = (u2 �f )(u1 �g). We have incorpo-
rated this by definingUq(g)with the reversed coproduct (2.9) and antipode. This means that
ourR ∈ U−

q ⊗U+
q (whereU±

q denotes the Borel subalgebras) is obtained from the usual one

by flipping the tensor components. For example, our R̂+−
+− = π+(R1)π

+
− (R2) = (q−q−1)

in the fundamental representation of Uq(su(2)), where ± labels the weights. Then the char-
acteristic equation and all compatibility relations with the invariant tensors have the same
form as usual, and are obtained from the standard ones by flipping all horizontal indices.

The q-deformed epsilon-symbol (“spinor metric”) for spin 1
2 representations is given by

ε+− = q−1/2, ε−+ = −q1/2, (A.1)

all other components are zero. The corresponding tensor with lowered indices is εαβ = −εαβ

and satisfies εαβεβγ = δαγ . In particular, εαβεαβ = −(q + q−1) = −[2]q .
The q-deformed sigma-matrices, i.e. the Clebsch–Gordon coefficients for (3) ⊂ (2)⊗(2),

are given by

σ++
1 = 1 = σ−−

−1 , σ+−
0 = q1/2√

[2]q
, σ−+

0 = q−1/2√
[2]q

(A.2)

in an orthonormal basis, and σαβ
i = σ i

αβ . They are normalized such that
∑

αβσ
i
αβσ

αβ
j = δij .

That is, they define a unitary map (at least for q ∈ R).
The q-deformed invariant tensor for spin 1 representations is given by

g1−1 = −q−1, g00 = 1, g−11 = −q, (A.3)

all other components are zero. Then gαβ = gαβ satisfies gαβgβγ = δαγ , and gαβgαβ =
q2 + 1 + q−2 = [3]q .

The Clebsch–Gordon coefficients for (3) ⊂ (3) ⊗ (3), i.e. the q-deformed structure
constants, are given by

ε10
1 = q−1, ε01

1 = −q, ε00
0 = −(q − q−1), ε1−1

0 = 1 = −ε−11
0 ,

ε0−1
−1 = q−1, ε−10

−1 = −q (A.4)

in an orthonormal basis, and εkij = ε
ij
k . They are normalized such that

∑
ijε

n
ijε

ij
m = [2]q2δnm.

Moreover, the following identities hold:

εnijg
jk = εnk

i , (A.5)

gijε
j

kl = ε
j

ikgjl, (A.6)

εnk
i εlm

k − εkm
i εnl

k = gnlδmi − δni g
lm, (A.7)
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which can be checked explicitly. In view of (A.6), the q-deformed totally (q-)antisymmetric
tensor is defined as follows:

εijk = ginε
jk
n = ε

ij
ng

nk. (A.8)

It is invariant under the action of Uq(su(2)).

Appendix B. Some proofs

Proof of (3.7). Using the identity

1 = q−2R̂ + (1 + q−4)P− + (1 − q−6)P 0, (B.1)

(A.5), (3.4), and the braiding relation (3.1) we can calculate the commutation relation of Θ
with the generators xi :

xiΘ = xi(xj ξtg
jt) = q−2R̂kl

ij xkxlξtg
jt + q−2ΛNε

n
ijxnξtg

jt + r2

[3]
(1 − q−6)gijξtg

jt

= q−2Θxi + q−2ΛNε
n
ijxnξtg

jt + r2 (1 − q−6)

[3]q
ξi

= q−2Θxi + q−2ΛNε
nk
i xnξk + r2q−3(q − q−1)ξi,

which yields (3.7). �

Proof of (3.13) and (3.15). Using (3.12), one has

Θξi = −q2ξiΘ, (B.2)

which implies ΘΘ = Θ(x · ξ) = dx · ξ − q2ΘΘ , hence

(1 + q2)Θ2 = dx · ξ.
On the other hand, (3.7) yields

dx · ξ = −ΛNxiε
kl
j ξkξlg

ij − q3(q − q−1)Θ2,

and combining this it follows that

Θ2 = −q2ΛN

[2]q2
xiξkξlε

ikl.

We wish to relate this to dxi dxj gij, which is proportional to dΘ . Using the relations
εnk
i xnξk = −q−2εnk

i ξnxk , Θ = q−4ξ · x, (A.6) and (A.7), one can show that

εnk
i xnξkε

ml
j xmξlg

ij = ΛNxiξkξlε
ikl + q2Θ2,

which using (3.7) implies

dxi dxj g
ij = − 1

CN

r2 Θ2. �
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Proof of d ◦ d = 0 on Ω1
q,N . First, we calculate

[Θ, dξi] = (q2 − 1)(q2 + 1)

(
ξiΘ

2 + q−2ΛN

[2]q2
εkl
i ξkξlΘ

)

= (q2 − 1)(q2 + 1)(ξi(∗HΘ) − (∗Hξi)Θ) = 0,

using (B.2), (3.18) and (3.17). This implies that

d(d(f ξi)) = [Θ, df ξi + f dξi] = [Θ, df ]+ξi − df [Θ, ξi]+ + df dξi + f [Θ, dξi]

= d df + ∗H (df )ξi − df (dξi + ∗H (ξi)) + df dξi

= −df ∗H ξi + (∗H df )ξi = 0

by (3.17) for any f ∈ S2
q,N . This proves d ◦ d = 0 on Ω1

q,N . �

Proof of (3.17). First, we show that

(∗Hξi)ξj = ξi(∗Hξj ), (B.3)

which is equivalent to

εnk
i ξnξkξj = ξiε

nk
j ξnξk.

Now Ω3
q,N is one-dimensional as module over S2

q,N , generated by Θ3 (3.23), which in
particular is a singlet under Uq(su(2)). This implies that

εnk
i ξnξkξj = (P 0)rs

ij ε
nk
r ξnξkξs = −q6[2]q2

ΛNr2
gijΘ

3 = (P 0)rs
ij ξrε

nk
s ξnξk = ξiε

nk
j ξnξk,

(B.4)

as claimed. Now (3.17) follows immediately using the fact that ∗H is a left- and right
S2
q,N -module map. �

Reality structure for q ∈ R. These are the most difficult calculations, and they are needed to
verify (3.49) as well. First, we have to show that (3.1) is compatible with the star structure
(3.29). By a straightforward calculation, one can reduce the problem to proving (3.30). We
verify this by projecting this quadratic equation to its spin 0, spin 1, and spin 2 part. The
first two are easy to check, using (3.10) in the spin 1 case. To show the spin 2 sector, it
is enough to consider (3.30) for i = j = 1, by covariance. This can be seen, e.g., using
[x1, ε

ij
1xiξj ] = −q−2ΛNx1ξ1, which in turn can be checked using (B.1), (3.3) and (A.4).

Next, we show that (3.12) is compatible with the star structure (3.29). This can be reduced
to

(q2R̂ − q−2R̂−1)kl
ij dxk ξl = q2(q − q−1)

[2]qCN

r2
(1 + q2R̂)kl

ij dxk dxl.

The spin 0 part is again easy to verify, and the spin 1 part vanishes identically (since then
R̂ has eigenvalue −q−2). For the spin 2 part, one can again choose i = j = 1, and verify
it, e.g., by comparing with the differential of Eq. (3.30).
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Proof of (3.46). Since Ω∗
q,N is finitely generated and because of (2.43) and [Θ3, f ] = 0,

it is enough to consider β = ξk . In this case, the claim reduces to

ξiξj ξk = S−2(ξk)ξiξj .

Now S−2(ξk) = Dl
kξl , where Dl

k = δlkq
2rl with rl = (2, 0,−2) for l = (1, 0,−1),

respectively. Since ξiξj = (1/[2]q2)εnij(ε
rs
n ξrξs), there remains to show that (εrs

n ξrξs)ξk =
S−2(ξk)(ε

rs
n ξrξs). By (B.4), this is equivalent to

gnkΘ
3 = Dl

kglnΘ
3,

which follows from the definition of Dl
k . �

Proof of Lemma 4.1. Using (3.19) and (3.24) and dΘ2 = 0, we have

d ∗H dψ = d(ψΘ2 − Θ2ψ) = (dψ)Θ2 − Θ2 dψ = (dψ)Θ2 + [Θ2, ψ]Θ

= (dψ)Θ2 + (∗H dψ)Θ. (B.5)

To proceed, we need to evaluate dψK . Because it is an irreducible representation, it is
enough to consider ψK = (x1)

K . From (3.30) and using ξ1x1 = q−2x1ξ1, it follows that

dx1x1 = q2x1 dx1 − q−2

CN

r2x1ξ1,

since R̂ can be replaced by q2 here. By induction, one finds

dx1x
k
1 = xk1

(
q2k dx1 − [k]q2

q−2

CN

r2ξ1

)
, (B.6)

and by an elementary calculation it follows that

d(xk+1
1 ) = [k + 1]qx

k
1

(
qk dx1 − q−2

[2]qCN

[k]qr
2ξ1

)
. (B.7)

Moreover, we note that using (3.17)

(ξiΘ + ∗Hξi)Θ = ξi(∗HΘ) + (∗Hξi)Θ = 2(∗Hξi)Θ = − 2

r2
xiΘ

3. (B.8)

The last equality follows easily from (B.4) and (B.2). Similarly

(dxi Θ + ∗H dxi)Θ = 2 ∗H dxi Θ = 2 dxi Θ
2. (B.9)

Now we can continue (B.5) as

d ∗H dxK1 = (dxK−1
1 Θ + ∗H dxK−1

1 )Θ

= [K]qx
K−1
1

(
2qK−1 dx1 Θ

2 − 2
q−2

[2]qCN

[K − 1]qx1Θ
3
)
. (B.10)
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Finally it is easy to check that

dxi Θ
2 = − 1

CN

xiΘ
3, (B.11)

and after a short calculation one finds (4.6). �

References

[1] A.Yu. Alekseev, A. Recknagel, V. Schomerus, Non-commutative world-volume geometries: branes on SU(2)
and fuzzy spheres, JHEP 9909 (1999) 023.

[2] A.Yu. Alekseev, A. Recknagel, V. Schomerus, Brane dynamics in background fluxes and non-commutative
geometry. hep-th/0003187.

[3] L. Alvarez-Gaumé, C. Gomez, G. Sierra, Duality and quantum groups, Nucl. Phys. B 330 (1990) 347.
[4] J. Apel, K. Schmüdgen, Classification of three-dimensional covariant differential calculi on Podleś’ quantum
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